Reinforcement Learning in Recommendation Off-policy Policy Evaluation

Ondřej Podsztavek

Faculty of Information Technology Czech Technical University in Prague

March 16, 2018

Outline

Introduction

Contextual Bandits

Full Reinforcement Learning

Motivation

Recommendation algorithms are typically optimized for click through rate:

$$CTR \stackrel{\text{def}}{=} rac{\text{total number or clicks}}{\text{total number of visits}} imes 100.$$

But there is interest in optimizing customer lifetime value:

$$LTV \stackrel{\text{def}}{=} rac{ ext{total number or clicks}}{ ext{total number of visitors}} imes 100.$$

Reinforcement learning can possibly address this problem.

Goals

- 1. Design off-line performance metric.
- 2. Implement simulator to measure performance.
- 3. Measure performance of context-free bandit as simple baseline.
- 4. Move on to contextual bandits and full reinforcement learning algorithms.

Challenges

How to **compute good lifetime value strategy** and **evaluate** it off-line (**off-policy**) from logged data collected by different (**behavior**) policy.

Contextual Bandits

- Select articles to serve users based on contextual information about users and articles.
- Simultaneously adapting its selection strategy according to user-click feedback.
- Maximize *CTR*.

Feature-based Exploration and Exploitation Problem

- Large number users and content represented by features.
- Critical to **generalize** users and content.
- Balance user satisfaction in long run (*exploitation*) and gathering information about goodness of content (*exploration*).

Definition

Contextual bandit algorithm **A** proceeds in time steps t = 1, 2, 3, ... and at each t:

- 1. A observes a user u_t and a set A_t of actions characterized by *context* vector $\mathbf{x}_{t,a}$ summarizing both the user u_t and the action a.
- 2. A chooses and action a_t and receives reward r_{t,a_t} .
- 3. **A** improves its selection strategy with the new observation $(\mathbf{x}_{t,a}, a_t, r_{t,a_t})$

Total T-trial Return

Total T-trial return is defined as:

$$G(T) \stackrel{\mathsf{def}}{=} \sum_{t=1}^{T} r_{t,\mathsf{a}_t}$$

and optimal expected T-trial return:

$$G^*(T) \stackrel{\text{def}}{=} \mathbf{E}\left[\sum_{t=1}^T r_{t,a_t^*}\right].$$

In context of article recommendation:

- An article is an action.
- If article is clicked on the reward is 1 else 0 then expected return is CTR.

LinUCB¹, Linear Upper Confidence Bound

Estimate mean reward of $\hat{\mu}_{t,a}$ and confidence interval $c_{t,a}$, such that with high probability:

$$|\hat{\mu}_{t,a} - \mu_a| < c_{t,a}, \quad a_t = \arg \max_a (\hat{\mu}_{t,a} + c_{t,a}).$$

LinUCB with *disjoint* linear models:

$$\mathbf{E}[r_{t,a}|\mathbf{x}_{t,a}] = \mathbf{x}_{t,a}^{\top}\theta_a^*.$$

LinUCB with hybrid linear models:

$$\mathbf{E}[r_{t,a}|\mathbf{x}_{t,a}] = \mathbf{z}_{t,a}^{\top}\beta^* + \mathbf{x}_{t,a}^{\top}\theta_a^*.$$

Both learned with ridge regression.

¹Lihong Li et al. "A Contextual-bandit Approach to Personalized News Article Recommendation". In: *Proceedings of the 19th International Conference on World Wide Web.* 2010.

Approaches Off-line Evaluation

- 1. **On-line** evaluation *expensive* and *not reproducible*.
- 2. **Simulator** is challenging to implement moreover might be biased.
- 3. **Off-line** data could provide unbiased estimate but they are *partially-labeled* (only one action has reward feedback).

Off-line Evaluation of Contextual Bandits²

1:
$$h_0 \leftarrow \emptyset$$
, $\hat{G}_A \leftarrow 0$, $T \leftarrow 0$
2: for $t = 1, 2, 3, ..., L$ do
3: get the *t*-th event (\mathbf{x}, a, r_a) from *S* {stream *S* of length *L*}
4: if $\mathbf{A}(h_{t-1}, \mathbf{x}) = a$ then
5: $h_t \leftarrow \text{concatenate}(h_{t-1}, (\mathbf{x}, a, r_a))$
6: $\hat{G}_A \leftarrow \hat{G}_A + r_a, T \leftarrow T + 1$
7: else
8: $h_t \leftarrow h_{t-1}$
9: end if
10: end for
11: return \hat{G}_A/T

Assumptions

Stable arms set. Logging policy chooses arms uniformly at random. Data, events are IID.

²L. Li et al. "Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms". In: *ArXiv e-prints* (Mar. 2010). arXiv: 1003.5956 [cs.LG].

Direct Method

Estimate the value of policy π (policy evaluation):

$$V^{\pi} = \mathbf{E}_{(x,\mathbf{r})\sim D}[r_{\pi(x)}|x].$$

Policy optimization is to find an optimal policy with maximum value:

$$\pi^* = \arg \max_{\pi} V^{\pi}.$$

Form an estimate of $\hat{\rho}_a(x) = \mathbf{E}_{(x,\mathbf{r})\sim D}[r_a|x]$ of expected reward considering a context and an action:

$$\hat{V}^{\pi}_{\mathsf{DM}} = rac{1}{|S|} \sum_{x \in S} \hat{
ho}_{\pi(x)}(x).$$

Estimate $\hat{\rho}$ might be biased (is based on different policy).

Inverse Propensity Score

Approximate behavior policy $\hat{p}(a|x)$ of p(a|x) and correct the proportion between target and behavior policy:

$$\hat{V}_{\mathsf{IPS}}^{\pi} = \frac{1}{|S|} \sum_{(x,a,r_a) \in S} \frac{r_a \mathbf{I}(\pi(x) = a)}{\hat{p}(a|x)}$$

In practice no problem with bias but high variance.

Take advantage of both *direct model* and *inverse propensity score*:

$$\hat{V}_{\mathsf{DR}}^{\pi} = \frac{1}{|S|} \sum_{(x,a,r_a)\in S} \left[\frac{(r_a - \hat{\rho}_a(x))\mathbf{I}(\pi(x) = a)}{\hat{\rho}(a|x)} + \hat{\rho}_{\pi(x)}(x) \right]$$

Intuition is to use $\hat{\rho}$ as a baseline and if data available apply correction.

³Miroslav Dudík, John Langford, and Lihong Li. "Doubly Robust Policy Evaluation and Learning". In: *CoRR* abs/1103.4601 (2011). arXiv: 1103.4601. URL: http://arxiv.org/abs/1103.4601.

Full Reinforcement Learning

Reinforcement learning algorithms distinguish between a visit and a visitor. Moreover, they can *learn from delayed reward*.

Motivation

"I expected to find something in recommendation systems, but I believe those are still dominated by collaborative filtering and contextual bandits. (...) Every Internet company ever has probably thought about adding RL to their ad-serving model, but if anyones done it, they've kept quiet about it."⁴

Advantages over contextual bandits

Sufficient if users establish long-term relationships by returning back (do not expect i.i.d. visits).

⁴Alex Irpan. *Deep Reinforcement Learning Doesn't Work Yet*. 2018. URL: https://www.alexirpan.com/2018/02/14/rl-hard.html.

Markov Decision Process

Definition

MDP is a tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$, where \mathcal{S} is a set of possible states, \mathcal{A} is a finite set of actions, $\mathcal{P}(s, a, s')$ is a probability of transition to s' when action a is taken in state s, $\mathcal{R}(s, a) \in \mathbb{R}$ is a reward received when action a is taken in state s and $\gamma \in [0, 1]$ is a discount factor.

In recommendation context:

- S is set of feature vectors describing a user,
- \mathcal{A} is set of articles to recommend,
- \mathcal{P} described (**unknown**) dynamics of users and
- $\mathcal{R}(s, a)$ is 1 if a user click on the article a else 0.

Reinforcement Learning Objective

Goal

Find a decision rule called *policy* π that maximizes the expected performance $\mathbf{E}[R(\tau)|\pi]$.

- Policy π(a|s) denotes the probability of taking action a in state s.
- Episode produces a *trajectory* $\tau = s_1, a_1, r_1, \dots, s_T, a_T, r_T$.
- T is a time horizon.
- $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$ is the *return* of trajectory τ .

Off-line Evaluation in Full Reinforcement Learning

- 1. **Simulator-based**: Fit a MDP model from the data and evaluate the against model.
- 2. **Simulator-free**: Evaluate based on *importance sampling* which correct the mismatch between target and behavior policy.

Importance Sampling⁵

Estimate the expected value of a random variable x with distribution d from sample drawn from distribution d':

$$\mathbf{E}_d[x] = \int x d(x) dx = \int x \frac{d(x)}{d'(x)} d'(x) dx = \mathbf{E}_{d'} \left[x \frac{d(x)}{d'(x)} \right]$$

Unbiased and consistent estimate:

$$\frac{1}{n}\sum_{i=1}^n x_i \frac{d(x_i)}{d'(x_i)}.$$

⁵Doina Precup, Richard S. Sutton, and Satinder P. Singh. "Eligibility Traces for Off-Policy Policy Evaluation". In: *Proceedings of the Seventeenth International Conference on Machine Learning*. ICML '00. 2000.

Importance Sampling Estimator

Provide unbiased estimate of π_b value. Define the per-step importance ratio:

$$\rho_t \stackrel{\text{def}}{=} \frac{\pi_t(a_t|s_t)}{\pi_b(a_t|s_t)}$$

and cumulative importance ratio:

$$\rho_{1:t} \stackrel{\mathsf{def}}{=} \prod_{t'=1}^t \rho_{t'}.$$

Trajectory-wise *importance sampling* estimate:

$$V_{\rm IS} \stackrel{\rm def}{=} \sum_{t=1}^{H} \gamma^{t-1} \rho_{1:t} r_t.$$

High Confidence Off-policy Evaluation⁷

Model-free approach to off-policy evaluation. Compute lower bound on true performance $\mathbf{E}[R(\tau)|\pi]$ using *importance sampling*. Three approaches:

- concentration inequality⁶,
- Student's t-test,
- bias corrected and accelerated bootstrap.

Suitable for safe policy improvement.

⁶Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. "High Confidence Off-Policy Evaluation". In: *Proceedings of the Twenty-Ninth Conference on Artificial Intelligence*. 2015.

⁷Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh. "Ad Recommendation Systems for Life-Time Value Optimization". In: *Proceedings of the 24th International Conference on World Wide Web*. 2015.

Doubly Robust Off-policy Value Evaluation⁹

Doubly robust estimator for sequential decision-making. Unbiased and much lower variance than *importance sampling*.

MAGIC⁸

Better extension of doubly robust estimator.

⁸Philip S. Thomas and Emma Brunskill. "Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning". In: *CoRR* abs/1604.00923 (2016). arXiv: 1604.00923. URL: http://arxiv.org/abs/1604.00923.

⁹Nan Jiang and Lihong Li. "Doubly Robust Off-policy Evaluation for Reinforcement Learning". In: *CoRR* abs/1511.03722 (2015). arXiv: 1511.03722. URL: http://arxiv.org/abs/1511.03722. Model-based reinforcement learning which while recommending models users and based on its model plans what to recommend.