Reinforcement Learning in Recommendation Off-policy Policy Evaluation

Ondřej Podsztavek

Faculty of Information Technology Czech Technical University in Prague

March 16, 2018

Outline

[Introduction](#page-2-0)

[Contextual Bandits](#page-5-0)

[Full Reinforcement Learning](#page-14-0)

Motivation

 \triangleright Recommendation algorithms are typically optimized for click through rate:

$$
CTR \stackrel{\text{def}}{=} \frac{\text{total number or clicks}}{\text{total number of visits}} \times 100.
$$

 \triangleright But there is interest in optimizing customer lifetime value:

$$
LTV \stackrel{\text{def}}{=} \frac{\text{total number or clicks}}{\text{total number of visitors}} \times 100.
$$

 \blacktriangleright Reinforcement learning can possibly address this problem.

Goals

- 1. Design off-line performance metric.
- 2. Implement simulator to measure performance.
- 3. Measure performance of context-free bandit as simple baseline.
- 4. Move on to contextual bandits and full reinforcement learning algorithms.

Challenges

How to compute good lifetime value strategy and evaluate it off-line (off-policy) from logged data collected by different (behavior) policy.

Contextual Bandits

- \triangleright Select articles to serve users based on contextual information about users and articles.
- \triangleright Simultaneously adapting its selection strategy according to user-click feedback.
- \blacktriangleright Maximize CTR.

Feature-based Exploration and Exploitation Problem

- \blacktriangleright Large number users and content represented by features.
- \triangleright Critical to generalize users and content.
- \triangleright Balance user satisfaction in long run (exploitation) and gathering information about goodness of content (exploration).

Definition

Contextual bandit algorithm \bf{A} proceeds in time steps $t = 1, 2, 3, ...$ and at each t:

- 1. A observes a user u_t and a set A_t of actions characterized by context vector $x_{t,a}$ summarizing both the user u_t and the action a.
- 2. **A** chooses and action a_t and receives reward r_{t, a_t} .
- 3. A improves its selection strategy with the new observation $(\mathsf{x}_{t,a},a_t,r_{t,a_t})$

Total T-trial Return

Total T-trial return is defined as:

$$
G(T) \stackrel{\text{def}}{=} \sum_{t=1}^{T} r_{t,a_t}
$$

and optimal expected T-trial return:

$$
G^*(\mathcal{T}) \stackrel{\text{def}}{=} \mathbf{E} \left[\sum_{t=1}^T r_{t, a_t^*} \right].
$$

In context of article recommendation:

- \triangleright An article is an action.
- If article is clicked on the reward is 1 else 0 then expected return is CTR.

LinUCB¹ , Linear Upper Confidence Bound

Estimate mean reward of $\hat{\mu}_{t,a}$ and confidence interval $c_{t,a}$, such that with high probability:

$$
|\hat{\mu}_{t,a} - \mu_a| < c_{t,a}, \quad a_t = \arg \max_a (\hat{\mu}_{t,a} + c_{t,a}).
$$

LinUCB with *disjoint* linear models:

$$
\mathbf{E}[r_{t,a}|\mathbf{x}_{t,a}] = \mathbf{x}_{t,a}^{\top} \theta_a^*.
$$

LinUCB with hybrid linear models:

$$
\mathbf{E}[r_{t,a}|\mathbf{x}_{t,a}] = \mathbf{z}_{t,a}^\top \boldsymbol{\beta}^* + \mathbf{x}_{t,a}^\top \boldsymbol{\theta}_a^*.
$$

Both learned with ridge regression.

¹ Lihong Li et al. "A Contextual-bandit Approach to Personalized News Article Recommendation". In: Proceedings of the 19th International Conference on World Wide Web. 2010.

Approaches Off-line Evaluation

- 1. On-line evaluation expensive and not reproducible.
- 2. Simulator is challenging to implement moreover might be biased.
- 3. Off-line data could provide unbiased estimate but they are partially-labeled (only one action has reward feedback).

Off-line Evaluation of Contextual Bandits²

1:
$$
h_0 \leftarrow \emptyset
$$
, $\hat{G}_A \leftarrow 0$, $T \leftarrow 0$
\n2: **for** $t = 1, 2, 3, \ldots, L$ **do**
\n3: get the *t*-th event (\mathbf{x}, a, r_a) from *S* {stream *S* of length L }
\n4: **if** $\mathbf{A}(h_{t-1}, \mathbf{x}) = a$ **then**
\n5: $h_t \leftarrow \text{concatenate}(h_{t-1}, (\mathbf{x}, a, r_a))$
\n6: $\hat{G}_A \leftarrow \hat{G}_A + r_a$, $T \leftarrow T + 1$
\n7: **else**
\n8: $h_t \leftarrow h_{t-1}$
\n9: **end if**
\n10: **end for**
\n11: **return** \hat{G}_A/T

Assumptions

Stable arms set. Logging policy chooses arms uniformly at random. Data, events are IID.

 2 L. Li et al. "Unbiased Offline Evaluation of Contextual-bandit-based News Article Recommendation Algorithms". In: ArXiv e-prints (Mar. 2010). arXiv: [1003.5956 \[cs.LG\]](http://arxiv.org/abs/1003.5956).

Direct Method

Estimate the value of policy π (policy evaluation):

$$
V^{\pi} = \mathbf{E}_{(x,\mathbf{r})\sim D}[r_{\pi(x)}|x].
$$

Policy optimization is to find an optimal policy with maximum value:

$$
\pi^* = \arg \max_{\pi} V^{\pi}.
$$

Form an estimate of $\hat{\rho}_a(x) = \mathbf{E}_{(x,r) \sim D}[r_a|x]$ of expected reward considering a context and an action:

$$
\hat{V}_{\text{DM}}^{\pi} = \frac{1}{|S|} \sum_{x \in S} \hat{\rho}_{\pi(x)}(x).
$$

Estimate $\hat{\rho}$ might be biased (is based on different policy).

Inverse Propensity Score

Approximate behavior policy $\hat{p}(a|x)$ of $p(a|x)$ and correct the proportion between target and behavior policy:

$$
\hat{V}_{\textsf{IPS}}^{\pi} = \frac{1}{|S|} \sum_{(x,a,r_a) \in S} \frac{r_a \mathbf{I}(\pi(x) = a)}{\hat{p}(a|x)}
$$

In practice no problem with bias but high variance.

Take advantage of both direct model and inverse propensity score:

$$
\hat{V}_{\text{DR}}^{\pi} = \frac{1}{|S|} \sum_{(x,a,r_a) \in S} \left[\frac{(r_a - \hat{\rho}_a(x)) \mathbf{I}(\pi(x) = a)}{\hat{\rho}(a|x)} + \hat{\rho}_{\pi(x)}(x) \right].
$$

Intuition is to use $\hat{\rho}$ as a baseline and if data available apply correction.

³Miroslav Dudík, John Langford, and Lihong Li. "Doubly Robust Policy Evaluation and Learning". In: CoRR abs/1103.4601 (2011). arXiv: [1103.4601](http://arxiv.org/abs/1103.4601). url: <http://arxiv.org/abs/1103.4601>.

Full Reinforcement Learning

Reinforcement learning algorithms distinguish between a visit and a visitor. Moreover, they can learn from delayed reward.

Motivation

"I expected to find something in recommendation systems, but I believe those are still dominated by collaborative filtering and contextual bandits. (...) Every Internet company ever has probably thought about adding RL to their ad-serving model, but if anyones done it, they've kept quiet about it."⁴

Advantages over contextual bandits

Sufficient if users establish long-term relationships by returning back (do not expect i.i.d. visits).

⁴ Alex Irpan. Deep Reinforcement Learning Doesn't Work Yet. 2018. URL: <https://www.alexirpan.com/2018/02/14/rl-hard.html>.

Markov Decision Process

Definition

MDP is a tuple $M = (S, A, P, R, \gamma)$, where S is a set of possible states, ${\cal A}$ is a finite set of actions, ${\cal P}(s,a,s')$ is a probability of transition to s' when action s is taken in state $s,\,\mathcal{R}(s,s)\in\mathbb{R}$ is a reward received when action a is taken in state s and $\gamma \in [0,1]$ is a discount factor.

In recommendation context:

- \triangleright S is set of feature vectors describing a user,
- \blacktriangleright A is set of articles to recommend.
- \triangleright P described (unknown) dynamics of users and
- \triangleright R(s, a) is 1 if a user click on the article a else 0.

Reinforcement Learning Objective

Goal

Find a decision rule called *policy* π that maximizes the expected performance $\mathbf{E}[R(\tau)|\pi]$.

- Policy $\pi(a|s)$ denotes the probability of taking action a in state s.
- **Episode produces a trajectory** $\tau = s_1, a_1, r_1, \ldots, s_T, a_T, r_T$.
- \blacktriangleright T is a time horizon.
- $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$ is the *return* of trajectory τ .

Off-line Evaluation in Full Reinforcement Learning

- 1. Simulator-based: Fit a MDP model from the data and evaluate the against model.
- 2. **Simulator-free**: Evaluate based on *importance sampling* which correct the mismatch between target and behavior policy.

Importance Sampling⁵

Estimate the expected value of a random variable x with distribution d from sample drawn from distribution d' :

$$
\mathsf{E}_d[x] = \int x d(x) dx = \int x \frac{d(x)}{d'(x)} d'(x) dx = \mathsf{E}_{d'}\left[x \frac{d(x)}{d'(x)}\right].
$$

Unbiased and consistent estimate:

$$
\frac{1}{n}\sum_{i=1}^n x_i \frac{d(x_i)}{d'(x_i)}.
$$

⁵Doina Precup, Richard S. Sutton, and Satinder P. Singh. "Eligibility Traces for Off-Policy Policy Evaluation". In: Proceedings of the Seventeenth International Conference on Machine Learning. ICML '00. 2000.

Importance Sampling Estimator

Provide unbiased estimate of π_b value. Define the per-step importance ratio:

$$
\rho_t \stackrel{\text{def}}{=} \frac{\pi_t(a_t|s_t)}{\pi_b(a_t|s_t)}
$$

and cumulative importance ratio:

$$
\rho_{1:t} \stackrel{\text{def}}{=} \prod_{t'=1}^{t} \rho_{t'}.
$$

Trajectory-wise importance sampling estimate:

$$
V_{\text{IS}} \stackrel{\text{def}}{=} \sum_{t=1}^{H} \gamma^{t-1} \rho_{1:t} r_t.
$$

High Confidence Off-policy Evaluation⁷

Model-free approach to off-policy evaluation. Compute lower bound on true performance $\mathbf{E}[R(\tau)|\pi]$ using *importance sampling*. Three approaches:

- \blacktriangleright concentration inequality⁶,
- \blacktriangleright Student's *t*-test.
- \triangleright bias corrected and accelerated bootstrap.

Suitable for safe policy improvement.

⁷Georgios Theocharous, Philip S. Thomas, and Mohammad Ghavamzadeh. "Ad Recommendation Systems for Life-Time Value Optimization". In: Proceedings of the 24th International Conference on World Wide Web. 2015.

⁶Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. "High Confidence Off-Policy Evaluation". In: Proceedings of the Twenty-Ninth Conference on Artificial Intelligence. 2015.

Doubly Robust Off-policy Value Evaluation⁹

Doubly robust estimator for sequential decision-making. Unbiased and much lower variance than *importance sampling*.

$MAGIC⁸$

Better extension of doubly robust estimator.

⁸Philip S. Thomas and Emma Brunskill. "Data-Efficient Off-Policy Policy Evaluation for Reinforcement Learning". In: CoRR abs/1604.00923 (2016). arXiv: [1604.00923](http://arxiv.org/abs/1604.00923). url: <http://arxiv.org/abs/1604.00923>. ⁹Nan Jiang and Lihong Li. "Doubly Robust Off-policy Evaluation for Reinforcement Learning". In: CoRR abs/1511.03722 (2015). arXiv: [1511.03722](http://arxiv.org/abs/1511.03722). url: <http://arxiv.org/abs/1511.03722>.

Model-based reinforcement learning which while recommending models users and based on its model plans what to recommend.